Black Holes

.. or real, existing ones. The singularity in the this hole is more time-like, while the other is more space-like. With this subtle difference, objects would be able to enter the black whole from regions away from the equator of the event horizon and not be destroyed. The reason it is called a black hole is because any light inside of the singularity would be pulled back by the infinite gravity so that none of it could escape. As a result anything passing beyond the event horizon would dissappear from sight forever, thus making the black hole impossible for humans to see without using technologicalyl advanced instruments for measuring such things like radiation.

The second part of the name referring to the hole is due to the fact that the actual hole, is where everything is absorbed and where the center core presides. This core is the main part of the black hole where the mass is concentrated and appears purely black on all readings even through the use of radiation detection devices. The first scientists to really take an in depth look at black holes and the collapsing of stars, were a professor, Robert Oppenheimer and his student Hartland Snyder, in the early nineteen hundreds. They concluded on the basis of Einstein’s theory of relativity that if the speed of light was the utmost speed over any massive object, then nothing could escape a black hole once in it’s clutches. It should be noted, all of this information is speculation. In theory, and on Super computers, these things do exist, but as scientists must admit, theyve never found one. So the question arises, how can we see black holes? Well, there are several approaches to this question. Obviously, as realized from a previous paragraph, by seeing, it isnt necessarily meant to be a visual representation.

So were left with two approaches. The first deals with X-ray detection. In this precision measuring system, scientists would look for areas that would create enormous shifts in energy levels. Such shifts would result from gases that are sucked into the black hole. The enormous jolt in gravitation would heat the gases by millions of degrees. Such a rise could be evidence of a black hole. The other means of detection lies in another theory altogether.

The concept of gravitational waves could point to black holes, and researchers are developing ways to read them. Gravitational Waves are predicted by Einsteins General Theory of Relativity. They are perturbations in the curvature of spacetime. Sir Arthur Eddington was a strong supporter of Einstein, but was skeptical of gravity waves and is reported to have said, Graviatational waves propagate at the speed of thought. But what they are is important to a theory.

Gravitational waves are enormous ripples eminating from the core of the black hole and other large masses and are said to travel at the speed of light, but not through spacetime, but rather as the backbone of spacetime itself. These ripples pass straight through matter, and their strength weakens as it gets farther from the source. The ripples would be similar to a stone dropped in water, with larger ones toward the center and fainter ones along the outer circumference. The only problem is that these ripples are so minute that detecting them would require instrumentation way beyond our present capabilities. Because theyre unaffected by matter, they carry a pure signal, not like X-rays which are diffused and distorted.

In simulations the black hole creates a unique frequency known as it natural mode of vibrations. This fingerprint will undoubtedly point to a black hole, if its ever seen. Just recently a major discovery was found with the help of The Hubble Space Telescope. This telescope has just recently found what many astronomers believe to be a black hole, after being focused on a star orbiting an empty space. Several picture were sent back to Earth from the telescope showing many computer enhanced pictures of various radiation fluctuations and other diverse types of readings that could be read from the area in which the black hole is suspected to be in. Because a black hole floats wherever the star collapsed, the truth is, it can vastly effect the surrounding area, which might have other stars in it. It could also absorb a star and wipe it out of existance.

When a black hole absorbs a star, the star is first pulled into the Ergosphere, this is the area between the event horizon and singularity, which sweeps all the matter into the event horizon, named for it’s flat horizontal appearance and critical properties where all transitions take place. The black hole doesnt just pull the star in like a vaccuum, rather it creates what is known as an accretion disk which is a vortex like phenomenom where the stars material appears to go down the drain of the black hole. When the star is passed on into the event horizon the light that the star ordinarily gives off builds inside the ergosphere of the black hole but doesnt escape. At this exact point in time, high amounts of radiation are given off, and with the proper equipment, this radiation can be detected and seen as an image of emptiness or as preferred, a black hole. Through this technique astronomers now believe that they have found a black hole known as Cygnus X1. This supposed black hole has a huge star orbiting around it, therefore we assume there must be a black hole that it is in orbit with.

Science Fiction has used the black hole to come up with several movies and fantastical events related to the massive beast. Tales of time travel and of parallel universes lie beyond the hole. Passing the event horizon could send you on that fantastical trip. Some think there would be enough gravitational force to possible warp you to an end of the universe or possibly to a completely different one. The theories about what could lie beyond a black hole are endless. The real quest is to first find one.

So the question remains, do they exist? Black holes exist, unfortunately for the scientific community, their life is restricted to formulas and super computers. But, and there is a but, the scientific community is relentless in their quest to build a better means of tracking. Already the advances of hyper-sensitive equipment is showing some good signs, and the accuracy will only get better.